🌙
🔆
  • Hello

NCERT Solutions for Class 10 Maths Chapter 7 Exercise 7.2 – Coordinate Geometry

NCERT Solutions for Coordinate Geometry Class 10 Chapter 7 Ex 7.2 Maths has all the solutions to the questions provided in the NCERT Book of the latest edition.

Students are advised to practice all the questions to get good marks in the board examination.

Textbook NCERT
Class 10
Subject Mathematics
Chapter 7
Exercise 7.2
Chapter Name Coordinate Geometry

Class 10 Maths Chapter 7 Exercise 7.2 Coordinate Geometry NCERT Solution

Question1

Find the coordinates of the point which divides the join of (–1, 7) and (4, –3) in the ratio 2 : 3.

Answer

Using section formula, when externally cut $$m=2$$, $$n=3$$

$$x=\frac{mx_{2}+nx_{1}}{m+n}$$ , $$y=\frac{my_{2}+ny_{1}}{m+n}$$

$$x=\frac{(2\times4)-(3\times1)}{2+3}=\frac{5}{5}=1$$

$$y=\frac{(2\times-3)+(3\times7)}{2+3}=\frac{-6+21}{5}=\frac{15}{5}=3$$

Points is (x,y) = (1,3)

Question2

Find the coordinates of the points of trisection of the line segment joining (4, –1) and (–2, –3).

Answer

Coordinate Geometry Class 10 Exercise 7.2 Question 2

Trisect means

      AM = MN = NB

Let it be ‘x’

AM = MN = NB = x

$$\frac{AM}{MB}=\frac{x}{2x}=1:2$$ (cuts internally)

$$\therefore$$ m:n = 1:2

$$x_{1}=\frac{(1\times-2)+2\times4}{1+2}=\frac{-2+8}{3}=2$$

$$y_{1}=\frac{(1\times-3)+2\times-1}{1+2}=\frac{-3-2}{3}=\frac{-5}{3}$$

$$m=(x_{1},y_{1})=\left(2, \frac{-5}{3}\right)$$

Now,

$$\frac{AN}{NB}=\frac{2x}{x}=2:1$$

$$\therefore m:n = 2:1$$

$$x_{2}=\frac{(2\times-2)+1\times4}{2+1}=\frac{-4+4}{3}=0$$

$$y_{2}=\frac{(2\times-3)+1\times-1}{2+1}=\frac{-6-1}{3}=\frac{-7}{3}$$

$$m=(x_{2},y_{2})=\left(0, \frac{-7}{3}\right)$$

Question3

To conduct Sports Day activities, in your rectangular shaped school ground ABCD, lines have been drawn with chalk powder at a distance of 1m each. 100 flower pots have been placed at a distance of 1m from each other along AD, as shown in Fig. 7.12. Niharika runs $$\frac{1}{4}$$th the distance AD on the 2nd line and posts a green flag. Preet runs $$\frac{1}{5}$$th the distance AD on the eighth line and posts a red flag. What is the distance between both the flags? If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag?

Class 10 Maths Chapter 7 Exercise 7.2

Answer

Niharika at Points $$\left(2,\frac{100}{4}\right)$$

          ⇒ (2, 25)

Preet at points = $$\left(8,\frac{100}{5}\right)$$

         ⇒ (8, 20)

Distance b/w Ninarika and Preet =

  D = $$\sqrt{(8-2)^{2}+(25-20)^{2}}$$

   ⇒ $$\sqrt{(6)^{2}+(5)^{2}} = \sqrt{61}m$$

Rashmi at the midpoint of the line joining (2, 25) and (8, 20)

So ratio is (1:1)

      m:n = 1:1

Let point of Rashmi (x,y)

  $$x={1\times2+8\times1}{2}=5m$$

 $$x={1\times20+1\times25}{2}=\frac{45}{2}m$$

Rashmi is on $$5^{th}$$ line and at a distance of $$\frac{45}{2}$$m

Question4

Find the ratio in which the line segment joining the points (– 3, 10) and (6, – 8) is divided by (– 1, 6).

Answer

Let the point (-1,6) cuts the line segment in the ratio of (K:1)

A = (-3, 10), B = (6, -8)

So, 

   $$-1=\frac{k\times6-3\times1}{k+1}$$

$$-k-1=6k-3$$

$$-1+3=6k+k$$

$$k=\frac{2}{7}$$

K : 1 = $$\frac{2}{7}:1$$ = 2 : 7

Question5

Find the ratio in which the line segment joining A(1, – 5) and B(– 4, 5) is divided by the x-axis. Also find the coordinates of the point of division.

Answer

Let x-axis cuts line segment in ration (K:1)

Point on x-axis (x,0)

A = (1,-5), B = (-4,5)

$$x=\frac{k\times-4+1\times1}{k+1}$$

$$0=\frac{k\times5+1\times-5}{k+1}$$

5k – 5 = 0

5k = 5

k = 1

So, the ratio is (1:1)

Question6

If (1, 2), (4, y), (x, 6) and (3, 5) are the vertices of a parallelogram taken in order, find x and y.

Answer

Coordinate Geometry Class 10 Exercise 7.2 Question 6

midpoint of AC = $$\left(\frac{x+1}{2},\frac{6+2}{2}\right)$$

midpoint of AD = $$\left(\frac{4+3}{2},\frac{y+5}{2}\right)$$

    $$\frac{x+1}{2}=\frac{4+3}{2}$$

    $$ x+1=7$$

    $$x=6$$

Now

    $$\frac{6+2}{2}=\frac{y+5}{2}$$

    $$ 8=y+5$$

    $$y=3$$

Question7

Find the coordinates of a point A, where AB is the diameter of a circle whose centre is (2, – 3) and B is (1, 4).

Answer

Coordinate Geometry Class 10 Exercise 7.2 Question 7

Centre divides diameter in equal

So, 

     m : n = 1 : 1

  $$2=\frac{1\times1+1\times x}{2}$$

  $$\frac{x+1}{2}=2$$

  $$x=4-1= 3$$

Now,

 $$-3=\frac{1\times4+1\times y}{2}$$

 $$-6=4+y$$

  $$y=-10$$

Point A = (3, -10)

Question8

If A and B are (– 2, – 2) and (2, – 4), respectively, find the coordinates of P such that AP = $$\frac{3}{7}$$AB and P lies on the line segment AB.

Answer

$$AP=\frac{3}{7}AB$$    —-(i)

AP + PB = AB   —-(ii)

Put eq(ii) in eq(i)

$$AP=\frac{3}{7}(AP+PB)$$

7AP = 3 AP + 3 PB

4 AP = 3 PB

$$\frac{AP}{PB}=\frac{3}{4}=\frac{m}{n}=3:4$$

$$x=\frac{3\times2+4\times -2}{3+4}=\frac{6-8}{7}=\frac{-2}{7}$$

$$y=\frac{3\times-4+4\times -2}{3+4}=\frac{-12-8}{7}=\frac{-20}{7}$$

So point P = $$\left(\frac{-2}{7},\frac{-20}{7}\right)$$

Question9

Find the coordinates of the points which divide the line segment joining A(– 2, 2) and B(2, 8) into four equal parts.

Answer

$$\frac{PA}{PB}=\frac{}{}=1:3$$

$$x_{1}=\frac{2\times1+3\times -2}{4}=\frac{2-6}{4}=\frac{-4}{4}=1$$

$$x_{2}=\frac{1\times8+3\times 2}{4}=\frac{14}{4}=\frac{7}{2}$$

P = $$\left(-1, \frac{7}{2}\right)$$

$$\frac{AQ}{QB}=\frac{2x}{2x}=1:1$$

$$x_{2}=\frac{1\times2+1\times -2}{2}=0$$

$$y_{2}=\frac{1\times8+1\times 2}{2}=5$$

  Q (0, 5)

$$\frac{AR}{RB}=\frac{3x}{x}=3:1$$

$$x_{3}=\frac{1\times2+1\times -2}{4}=1$$

$$y_{3}=\frac{3\times8+1\times 2}{4}=\frac{26}{4}=\frac{13}{2}$$

So, answer is

$$R\left(1, \frac{13}{2}\right)$$

$$P\left(-1, \frac{7}{2}\right)$$

$$Q\left(0, 5\right)$$

Question10

Find the area of a rhombus if its vertices are (3, 0), (4, 5), (– 1, 4) and (– 2, – 1) taken in order.

Answer

Class 10 Maths Chapter 7 Exercise 7.2

Area of rhombus = $$\frac{1}{2}$$ (product of its diagonals)

So,

   AC = $$\sqrt{(3-(-1))^{2}+(0-4)^{2}} = \sqrt{4^{2}+4^{2}} = 4\sqrt{2}$$

   BD = $$\sqrt{(4-(-2))^{2}+(5-(-1))^{2}} = \sqrt{6^{2}+6^{2}} = 6\sqrt{2}$$

so, area = $$\frac{1}{2}\times4\sqrt{2}\times6\sqrt{2}$$ = 24 square units

Hope NCERT Solutions for Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.2, helps you in solving problems. If you have any doubts, drop a comment below and we will get back to you.