Loading Web-Font TeX/Math/Italic

Special welcome gift. Get 30% off your first purchase with code “Eduma”. Find out more!

Question

If x(a-b+\frac{ab}{a-b})=y(a+b-\frac{ab}{a+b}) and x+y=2a^3
,   then what is x-y equal to ?

  1. -2b^3
  2. -2ab^3
  3. 2b^3
  4. 2ab^3
Answer

‘.’    x(a-b+\frac{ab}{a-b})=y(a+b-\frac{ab}{a+b})

     \frac{x}{y}= \frac{(a+b-\frac{ab}{a+b})}{(a-b+\frac{ab}{a-b})}

     By, Componendo & Dividendo –

     \frac{x+y}{x-y} = \frac{(a+b-\frac{ab}{a+b})+(a-b+\frac{ab}{a-b})}{(a+b-\frac{ab}{a+b})-(a-b+\frac{ab}{a-b})}

      \frac{x+y}{x-y} = \frac{(2a + \frac{ab}{a-b} – \frac{ab}{a+b})}{(2b – \frac{ab}{a+b}- \frac{ab}{a-b})}

      \frac{ x+y}{x-y} = \frac{(2a + \frac{a^2b+ab^2 – (a^2b-ab^2)}{a^2-b^2})}{(2b – \frac{(a^2b-ab^2 + a^2b+ab^2)}{ a^2-b^2})}

      \frac{x+y}{x-y} = \frac{(2a + \frac{2ab^2}{a^2-b^2})}{2b – \frac{2a^2b}{a^2-b^2})}

    \frac{ x+y}{x-y} = \frac{(\frac{2a^3 – 2ab^2 +2ab^2}{a^2-b^2})}{(\frac{2a^2b – 2b^3 – 2a^2b}{a^2-b^2})}

   \frac{x+y}{x-y} = \frac{2a^3}{-2b^3}     

      So, x-y= -2b^3

Answer (A)

Share:

Advertisment

You May Also Like

×How can I help you?