Answer
acx³ + bcx² + adx² + acdx + bdx + bcd —-(i)
adx³ + acx² + bdx² + bcx + acdx + bcd ––(ii)
For equation (i),
acx³ +adx²+acdx + bcx² + bdx + bcd
$$ ax(cx^2+dx+cd) + b(cx^2+dx+cd)$$
$$(ax+b)(cx^2+dx+cd)$$
For equation (ii),
adx³ + acx² + bdx² + bcx + acdx + bcd
adx³ + acx² +acdx + bdx² + bcx + bcd
$$ ax(dx^2+cx+cd) + b(dx^2+cx+cd)$$
$$ (ax+b)(dx^2+cx+cd)$$
So, HCF is ( ax + b ).
Answer (D) – ax+b