🌙
🔆
  • Hello
Question

Consider the following statements: Which of the statements given above is/are correct?

  1. 1 only
  2. 2 only
  3. Both 1 and 2
  4. Neither 1 nor 2
Answer

1. If (a+b) is directly proportional to (a-b), then $$(a^2-b^2)$$ is directly proportional to ab.

2. If a is directly proportional to b, then $$(a^2-b^2)$$ is directly proportional to ab.

From 1. $$(a+b) ∝ (a-b)$$

=> $$(a+b)=k(a-b)$$, where k is constant

squaring we get,

=>$$(a+b)^2=k^2(a-b)^2$$

=>$$\frac{(a+b)^2}{(a-b)^2}=k2$$

=>$$\frac{a^2+2ab+b^2}{a^2-2ab+b^2}=k^2$$

Using Componendo and Dividendo, $$\frac{x}{y}=\frac{x+y}{x-y},$$

=>$$\frac{a^2+2ab+b^2+a^2-2ab+b^2}{a^2+2ab+b^2-(a^2-2ab+b^2)}=\frac{k^2+1}{k^2-1}$$

=> $$\frac{2(a^2+b^2)}{4ab}=\frac{k^2+1}{k^2-1}=c$$(let)

=>$$(a^2+b^2) ∝ ab$$

Hence, Statement 1 is correct.

From 2. $$a ∝ b$$

=> $$a=kb$$

=> $$\frac{a}{b}=k$$

Using Componendo and Dividendo,

=>$$\frac{ a+b}{a-b}=\frac{k+1}{k-1}$$

Squaring both sides,

=>$$ (\frac{a+b}{a-b})^2=(\frac{k+1}{k-1})^2$$

=>$$\frac{a^2+b^2+2ab}{a^2+b^2-2ab}=\frac{k^2+2k+1}{k^2-2k+1}$$

Again using C/D,

=>$$\frac{a^2+b^2+2ab+a^2+b^2-2ab}{a^2+b^2+2ab-(a^2+b^2-2ab)}$$=$$\frac{k^2+2k+1+k^2-2k+1}{k^2+2k+1-(k^2-2k+1)}$$

=>$$\frac{2(a^2+b^2)}{4ab}=\frac{2(k^2+1)}{4k}$$

=>$$(a^2+b^2) ∝ ab$$

Hence, statement 2 is incorrect.

Answer (A) – 1 only